
Regularity conditions

! These conditions are sufficient (but not necessary) to prove theorems giving the limiting
distributions for θ̂ and W as the sample size (or more generally some measure of the information
in the data) goes to infinity.

! Why they are needed:

– (C1) ensures that θ̂ can be ‘on all sides’ of θ0 in the limit — if it fails, then any limiting
distribution cannot be normal;

– (C2) is essential for consistency, otherwise θ̂ might not converge to a unique limit;

– (C3) is needed to bound terms of a Taylor series — can be replaced by other conditions; and

– (C4) ensures that θ̂ is consistent for θ0 and that the asymptotic variance of θ̂ is the inverse
Fisher information ı(θ0)−1.

! In some of the models arising later, (C4) may fail (or be close to failing), because the support of
the data depends on a parameter.
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MGFs and KGFs

! The moment-generating function (MGF) and cumulant-generating function (KGF) of a
scalar random variable X are

MX(t) = E
(
etX
)
, KX(t) = logMX(t), t ∈ N = {t : MX(t) < ∞}.

! N is non-empty, because MX(0) = 1, but the MGF and KGF are non-trivial only if N contains
an open neighbourhood of the origin, since then

MX(t) = E

(
∞∑

r=0

trXr

r!

)

=
∞∑

r=0

tr

r!
E(Xr), KX(t) =

∞∑

r=1

tr

r!
κr,

and one can obtain the moments E(Xr) and cumulants κr by differentiation.

! If X = (X1, . . . ,Xn) then we set t = (t1, . . . , tn)T and define MX(t) = E
(
et

TX
)
and KX(t) as

above. Then the mean and covariance matrix of X are E(X) = ∇tKX(t)|t=0 and
cov(X) = ∇2

tKX(t)|t=0.

! There is a 1–1 mapping between distributions and MGFs/KGFs (if the latter are non-trivial).

! If X = (X1,X2), t = (t1, t2) then

MX(t) = E
(
et

TX
)
= E

(
et

T
1 X1

)
E
(
et

T
2 X2

)
= MX1(t)MX2(t),∀t ⇐⇒ X1 ⊥⊥ X2.
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Note: Moments and cumulants

! We consider scalar X, as the calculations for vector X are analogous.

! First note that MX(t) = 1 when t = 0, since E(etX ) = E(1) = 1; thus 0 ∈ N for any X.

! If N contains an open set (−a, a) for some a > 0, and µr = E(Xr) denotes the rth moment of
X, then if |t| < a,

KX(t) =
∞∑

r=1

trκr
r!

= logMX(t) = log

(
∞∑

r=0

trµr

r!

)

= log(1 + b) = b− b2/2 + b3/3 + · · · ,

where b = tµ1 + t2µ2/2! + t3µ3/3! + · · · . If we expand and compare coefficients of t, t2, t3, . . . in
the two expansions we get

κ1 = µ1, κ2 = µ2 − µ2
1, κ3 = µ3 − 3µ2µ1 + 2µ3

1, κ4 = µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1, . . . ,

so κ1 = E(X), κ2 = var(X), κ3 = E{(X − µ1)3}, . . .
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Exponential family models

! If θ ∈ Θ ⊂ Rd, where dimΘ = d, and there exists a d× 1 function s = s(y) of data y and a
parametrisation (i.e., a 1–1 function) ϕ ≡ ϕ(θ) such that

f(y; θ) = m(y) exp {sTϕ− k(ϕ)} = m(y) exp [sTϕ(θ)− k{ϕ(θ)}] , θ ∈ Θ, y ∈ Y,

then this is an (d, d) exponential family of distributions, with

– canonical statistic S = s(Y ),

– canonical parameter ϕ,

– cumulant generator k, which is convex on N = {ϕ : k(ϕ) < ∞}, and

– mean parameter µ ≡ µ(ϕ) = E(S;ϕ) = ∇ϕk(ϕ).

! We suppose that there is no vector a ̸= 0 such that aTS is constant, and call the model a
minimal representation if there is no vector a ̸= 0 such that aTϕ is constant.

! The cumulant-generating function for S is

KS(t) = logMS(t) = k(ϕ+ t)− k(ϕ), t ∈ N ′ ⊂ R
d,

where 0 ∈ N ′. One can check that

E(S) = ∇ϕk(ϕ), var(S) = ∇2
ϕk(ϕ).
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Note: Cumulant-generating functions

! The MGF for the canonical statistic S of an exponential family is

MS(t) = E {exp(tTS)} =

∫
m(y) exp {sTt+ sTϕ− k(ϕ)} dy,

and since this must equal unity when t = 0 we see that
∫

m(y) exp {sTϕ} dy = exp{k(ϕ)},

and therefore that if t+ ϕ ∈ N , then

MS(t) =

∫
m(y) exp {sT(t+ ϕ)− k(ϕ)} dy = exp{k(ϕ+ t)− k(ϕ)},

which yields KS(t) = k(ϕ+ t)− k(ϕ).

! Now MS(0) = 1, KS(0) = 0, ∂KS(t)/∂t = ∇ϕk(ϕ+ t) and ∂2KS(t)/∂t∂tT = ∇2
ϕk(ϕ+ t), so

E(S) = ∂MS(t)/∂t|t=0 = ∂eKS(t)/∂t
∣∣∣
t=0

= ∂KS(t)/∂t e
KS(t)

∣∣∣
t=0

= ∇ϕk(ϕ).

A similar calculation for the variance gives

E(SST) = ∂2MS(t)/∂t∂t
T
∣∣
t=0

= ∇2
ϕk(ϕ) +∇ϕk(ϕ)∇ϕk(ϕ)

T,

and thus

var(S) = E(SST)− E(S)E(S)T = ∇2
ϕk(ϕ) +∇ϕk(ϕ)∇ϕk(ϕ)

T −∇ϕk(ϕ)∇ϕk(ϕ)
T = ∇2

ϕk(ϕ).
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Examples

Example 1 (Poisson distribution) If Y ∼ Poiss(λ), find its MGF and KGF and give its mean and
variance. Show also that a sum of independent Poisson variables has a Poisson distribution.

Example 2 (Poisson sample) If Y1, . . . , Yn
iid
∼ Poiss(λ), find the corresponding exponential family.

Example 3 (Log-linear model) If Y1, . . . , Yn
ind
∼ Poiss(λj), where λj = exp(β0 + β1xj) and

x1, . . . , xnv are known constants, find the corresponding exponential family.

! NB: avoid confusion — exponential family ̸= exponential distribution! The exponential
distribution is just one example of an exponential family.
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Note to Example 1

! The probability mass function of X is P(X = x) = λxe−λ/x!, x ∈ {0, 1, . . .}, λ > 0, so

MX(t) = E(etX) =
∞∑

x=0

ext
λx

x!
e−λ = e−λ

∞∑

x=0

(λet)x

x!
= exp{λ(et − 1)}, t ∈ R,

so KX(t) = λ(et − 1), N = R. Thus κr = λ for all r = 1, 2, . . ., and in particular
E(X) = var(X) = λ.

! Suppose that X1, . . . ,Xn are independent Poisson variables with respective means λ1, . . . ,λn.
Then for any t ∈ R their sum S = X1 + · · ·+Xn has MGF

E(etS) = E{et(X1+···+Xn)} = E

⎧
⎨

⎩

n∏

j=1

etXj

⎫
⎬

⎭ =
n∏

j=1

E(etXj ) = exp
{
(λ1 + · · ·+ λn)(e

t − 1)
}
,

where the third equality applies due to independence of the Xj . The bijection between MGFs and
distributions implies that S ∼ Poiss(

∑
λj).
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Note to Example 2

Independent Poisson Y1, . . . , Yn have joint probability mass function

f(y1, . . . , yn;λ) =
n∏

j=1

f(yj;λ) =
n∏

j=1

λyj

yj!
e−λ = m(y) exp(s log λ− nλ),

defined on Y = {0, 1, 2, . . .}n, with m(y) = (
∏

yj)−1. This is clearly a minimal representation of a
(1, 1) exponential family with

! canonical statistic s = s(y) =
∑

yj,

! canonical parameter log λ = ϕ ∈ N = R,

! cumulant generator k(ϕ) = nλ = neϕ and

! mean parameter µ = ∇ϕk(ϕ) = neϕ = nλ = E(S).

Two standard parametrizations use the real parameter ϕ or the mean µ = neϕ ∈ R+.
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Note to Example 3

Here Y1, . . . , Yn have joint probability mass function

n∏

j=1

f(yj;λj) =
n∏

j=1

λ
yj
j

yj!
e−λj =

n∏

j=1

eβ0yj+β1xjyj

yj!
e−eβ0+xjβ1

= m(y) exp {sTβ − k(β)} ,

defined on (y1, . . . , yn) ∈ Y and again with m(y) = (
∏

yj)−1. This is a (2, 2) exponential family with

! canonical statistic s = s(y) = (
∑

j yj,
∑

j xjyj),

! canonical parameter β = (β0,β1) = ϕ ∈ N = R2,

! cumulant generator k(ϕ) =
∑

j exp(β0 + xjβ1) and

! mean parameter µ = ∇ϕk(ϕ) = (
∑

j exp(β0 + xjβ1),
∑

j xj exp(β0 + xjβ1)) = E(S).

Provided that not all the xj are equal, this is a minimal representation.
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Exponential family models II

! Exponential families are closed under sampling: the joint density of independent observations
Y1, . . . , Yn from an exponential family with the same s(Yj)Tϕ = ST

j ϕ is

n∏

j=1

f(yj; θ) =
n∏

j=1

m(yj) exp
{
sT
j ϕ− kj(ϕ)

}
=

n∏

j=1

m(yj) exp

⎧
⎨

⎩

⎛

⎝
n∑

j=1

sj

⎞

⎠
T

ϕ−
n∑

j=1

kj(ϕ)

⎫
⎬

⎭ ,

so with kS(ϕ) =
∑

j kj(ϕ), the density of S =
∑

j Sj =
∑

j s(Yj) is

f(s; θ) = m∗(s)es
Tϕ−kS(ϕ), with m∗(s) =

∫

{y:
∑

j s(yj)=s}

n∏

j=1

m(yj) dy.

This is an exponential family, with canonical statistic S, canonical parameter ϕ and cumulant
generator kS(ϕ).

! The corresponding log likelihood function is

ℓ(ϕ) = log f(s; θ) ≡ sTϕ− kS(ϕ),

where ≡ means that additive constants have been dropped, so

∇ϕℓ(ϕ) = s−∇ϕkS(ϕ) = s− E(S;ϕ), ∇2
ϕℓ(ϕ) = −∇2

ϕkS(ϕ) = −ı(ϕ),

so the MLE ϕ̂ sets E(S;ϕ) equal to the observed s, and ı(ϕ) = ȷ(ϕ) = cov(S;ϕ).
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