Regularity conditions

[0 These conditions are sufficient (but not necessary) to prove theorems giving the limiting
distributions for 6 and W as the sample size (or more generally some measure of the information
in the data) goes to infinity.

0 Why they are needed:

— (C1) ensures that 0 can be ‘on all sides’ of 67 in the limit — if it fails, then any limiting
distribution cannot be normal;

— (C2) is essential for consistency, otherwise 6 might not converge to a unique limit;
— (C3) is needed to bound terms of a Taylor series — can be replaced by other conditions; and

— (C4) ensures that 0 is consistent for §° and that the asymptotic variance of 0 is the inverse
Fisher information 2(6%) .

O In some of the models arising later, (C4) may fail (or be close to failing), because the support of
the data depends on a parameter.
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MGFs and KGFs

O The moment-generating function (MGF) and cumulant-generating function (KGF) of a
scalar random variable X are

Mx(t) =E (), Kx(t)=logMx(t), teN ={t: Mx(t) < oo}.

O N is non-empty, because M (0) = 1, but the MGF and KGF are non-trivial only if A/ contains
an open neighbourhood of the origin, since then

X" =t =t
Mx(t) =E Z e Z EE(XT), Kx(t) = Z micd
r=0 r=0 r=1

and one can obtain the moments E(X") and cumulants «, by differentiation.

O If X =(Xy,...,X,) then we set t = (t1,...,t,)" and define Mx(t) = E (etTX) and Kx(t) as
above. Then the mean and covariance matrix of X are E(X) = V,Kx(t)|t~0 and
cov(X) = V2K x (t)|t=o0.

O There is a 1-1 mapping between distributions and MGFs/KGFs (if the latter are non-trivial).

O If X =(Xy1,Xs), t = (t1,t2) then

Mx(t) =E (etTX> —F (etlTX1> E (et3X2) = Myx,(O)Mx, (1), ¥t < X; 1 X.
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Note: Moments and cumulants

[0 We consider scalar X, as the calculations for vector X are analogous.
O First note that Mx (t) = 1 when ¢ = 0, since E(¢!X) = E(1) = 1; thus 0 € A for any X.

0

If A contains an open set (—a,a) for some a > 0, and p, = E(X") denotes the rth moment of
X, then if |t| < a,

o (o]
t"k t"u
Kx(t) = Z T!r = IOng(t) = log (Z T!T> = log(l + b) =} — b2/2 + b3/3 +o
r=1 r=0
where b =ty + t2po /2! + t3u3 /3! + - - - . If we expand and compare coefficients of ¢,#2,#3, ... in

the two expansions we get
K1 =j1, Ko =pa— [, K3=p3—3papy +207, kg = pa—Apspn + 6papd — 3pi, ..,

so k1 = B(X), kg = var(X), k3 = B{(X — 11)3}, ...
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Exponential family models

O 1If 0 € © C RY where dim © = d, and there exists a d x 1 function s = s(y) of data y and a
parametrisation (i.e., a 1-1 function) ¢ = ¢(0) such that
fy;:0) = m(y) exp{s"v — k(p)} = m(y) exp[s'p(0) — k{p(0)}], 0€O,ye),
then this is an (d, d) exponential family of distributions, with
— canonical statistic S = s(Y),
— canonical parameter ¢,
— cumulant generator k, which is convex on N' = {¢ : k(p) < o}, and
— mean parameter u = p(p) = E(S;¢) = V k(p).
[0 We suppose that there is no vector a # 0 such that a™S is constant, and call the model a
minimal representation if there is no vector a # 0 such that a®y is constant.
[0 The cumulant-generating function for S'is
Kg(t) =log Ms(t) = k(o +1t) — k(p), teN CRY,
where 0 € N/, One can check that
E(S) = Vyk(p), var(S)= V?Ok(gp).
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Note: Cumulant-generating functions

[0 The MGF for the canonical statistic S' of an exponential family is

Ms(t) = E {exp((75)} = / m(y) exp {s™ + " — k()} dy,

and since this must equal unity when ¢ = 0 we see that

/ m(y) exp {7} dy = exp{k(e)},

and therefore that if t + ¢ € A/, then
Ms(t) = / m(y) exp {57 (t + ¢) — k(@)} dy = explk(p + ) — k().

which yields Kg(t) = k(e +t) — k(p).
O Now Mg(0) =1, Kg(0) =0, 0Kg(t)/0t = Vyk(p +t) and 8*Kg(t)/0tot" = Vik(p + 1), so

B(S) = OMg(t)/0t],_o = aeKS(t)/Bt‘t_O = 0Ks(t)/0te V| =V k(p).

A similar calculation for the variance gives
E(SS™) = 8*Mg(t)/0tot"|,_, = Vok(p) + Vok(©)Vok(p)",
and thus

var($) = E(SS") — B(S)E(S)" = Vk(g) + Vok(9)Vek(9)" — Vok(9)Vek(e)" = Vik(p).
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Examples

Example 1 (Poisson distribution) /fY ~ Poiss(\), find its MGF and KGF and give its mean and
variance. Show also that a sum of independent Poisson variables has a Poisson distribution.

Example 2 (Poisson sample) /fY7,...,Y, id Poiss()\), find the corresponding exponential family.

Example 3 (Log-linear model) /fY;,...,Y, nd Poiss();), where \j = exp(fo + B1x;) and
x1,...,TpVv are known constants, find the corresponding exponential family.

O NB: avoid confusion — exponential family # exponential distribution! The exponential
distribution is just one example of an exponential family.
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Note to Example 1
[0 The probability mass function of X is P(X = z) = Ae*/z!, 2 € {0,1,...}, A > 0, so

S AT 3 3 o )\et T
Mx(t) = E(e!*) = Zextge A=A Z % =exp{A(e’ — 1)}, tER,
z=0 ) z=0 )

so Kx(t)=Ae! —1), N =R. Thus k, = A for all r = 1,2,..., and in particular
E(X) =var(X) = \.

[0 Suppose that X1,...,X,, are independent Poisson variables with respective means Aq,..., A,.
Then for any t € R their sum S = X7 +--- + X,, has MGF

E(etS) _ E{et(X1+...+Xn)} —E Heth _ HE(eth) _ GXP{()\l 4t )\n)(et _ 1)} ’
ol =1

where the third equality applies due to independence of the X;. The bijection between MGFs and
distributions implies that S ~ Poiss(} A;).
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Note to Example 2

Independent Poisson Y7, ..., Y, have joint probability mass function

n

n R
fy, - ymA) = Hf(yj;)\) = H Fe A = m(y) exp(slog A — n\),
j=1 =177

defined on ¥ = {0,1,2,...}", with m(y) = ([Ty;)~!. This is clearly a minimal representation of a
(1,1) exponential family with

O canonical statistic s = s(y) = Y y;,

[0 canonical parameter log\ = ¢ € N =R,
O cumulant generator k(p) = nA = ne¥ and
U

mean parameter 1 = V k(p) = ne? = n\ = E(S5).

Two standard parametrizations use the real parameter ¢ or the mean = ne¥ € R;.
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Note to Example 3

Here Y7,...,Y, have joint probability mass function

50y7+51$7yj [30+x 81

H (y5: A Hyi* H " =m(y)exp{sB - k(B)},

defined on (y1,...,yn) € Y and again with m(y) = ([Ty;) . This is a (2,2) exponential family with
O canonical statistic s = s(y) = (32, ¥5, >_; Zj¥5),

[0 canonical parameter 8 = (By, 81) = ¢ € N = R?,

O cumulant generator k(p) = >, exp(8y + x;51) and

O mean parameter pi = Vok(p) = (32, exp(Bo + z;51), > ; xj exp(Bo + x;51)) = E(S).

Provided that not all the z; are equal, this is a minimal representation.
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Exponential family models Il

[0 Exponential families are closed under sampling: the joint density of independent observations
Y1,...,Y, from an exponential family with the same s(Y;)"y = Sipis

T

H (5:0) = [ [ m(y) exp {s]o — k() } = [T mu)exp | D osi | v =D ki(w)
j=1 j=1 j=1

j=1 j=1

3

so with ks(p) = >_; kj(¢), the density of S'=3_,5; =3, s(Y;) is

F(s30) = m(s)e" 249, with m'(s) = [ m(y;) dy.
{v:32; s(vy) S}J 1

This is an exponential family, with canonical statistic S, canonical parameter ¢ and cumulant
generator kg ().

[0 The corresponding log likelihood function is
U(p) =log f(s;0) = 5" — ks (),
where = means that additive constants have been dropped, so
Vol(p) = s — Voks(p) = s —E(S;9), Val(e) = —Viks(p) = —u(p),

so the MLE @ sets E(S; ) equal to the observed s, and 2(¢) = (@) = cov(S; ).
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